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In natural language processing words are commonly represented
as vectors. However, vector representations do not intrinsically in-
corporate the hierarchical relationships that obtain between many
words. We model words as positive operators. These have an order-
ing which we interpret as modelling hierarchical information. We
describe a simple way of building positive operators for words, and
give methods for composing these words representations to form
phrases and sentences. We test the methods on simple sentence-
level entailment datasets.

1 Introduction

Modelling words as vectors has been extremely successful in recent years.
Whilst such representations were originally e�ective in areas such as syn-
onymy and paraphrasing, it is also desirable to model more structure in words,
phrases, and sentences. One key task is commonly known as natural language
inference (NLI) or recognizing textual entailment. This kind of task challenges
a computational system to infer a relationship of entailment, contradiction,
or neither between two texts. In order to make such a judgement, we need
to be able to lexically compose words to form phrases and sentences above
the word level, and we furthermore need a notion of lexical entailment that
interacts nicely with our notion of composition 1. There has been a wide
range of research in this area, from logic-based models such as Bos and Mark-
ert [2006] to neural networks [Bowman et al., 2015b] and distributional ap-
proaches [Baroni et al., 2012]. Neural network approaches to NLI are very suc-
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cessful on the datasets for which they are designed, but there is evidence that
performance drops when tested on other datasets [Talman and Chatzikyri-
akidis, 2018, Bernardy and Chatzikyriakidis, 2019]. A model that combines the
tensor-based compositional vectors of Coecke et al. [2010] with a theory of
entailment known as the distributional inclusion hypothesis (DIH) [Ge�et and
Dagan, 2005] is examined in Kartsaklis and Sadrzadeh [2016], and forms the
baseline on which we will test our models. In Preller [2014], a description of
logical aspects of natural language semantics in biproduct dagger categories is
given. In that work, the semantics of a sentence is given by a Boolean vec-
tor, and describes negation, quanti�ers, and discourse-level semantics. In the
current paper we will aim for a sentence representation that is richer than this,
however, we do not yet have means to implement negation, quanti�ers, and
discourse.
The theoretical grounding for the current work is given in Bankova et al.

[2019], where a particular notion of hyponymy that interacts well with com-
positionality is described. However, no experimental support is given in that
paper. Similar work is carried out in Balkır et al. [2016], and some experiments
are undertaken. In this paper, we will build positive operators that represent
words. The operators are built using GloVe vectors [Pennington et al., 2014]
and information from WordNet [Miller, 1995]. As such, our approach is a hy-
brid approach, using both distributional and human-curated information. We
will use two new measures for graded hyponymy, developed in Lewis [2019a],
that provide a wider range of comparisons than the entropy-derived measure
developed in Balkır et al. [2016] or the eigenvalue-related measure of Bankova
et al. [2019]. We describe a composition method for positive operators, and
discuss types of normalization that can be applied to operators, ultimately us-
ing a normalization that sets the maximum eigenvalue to 1. We test our models
on the compositional dataset of Kartsaklis and Sadrzadeh [2016].

2 Background

There are a number of fast and e�ective methods for building vectors for indi-
vidual words, dating back to Salton et al. [1975]. However, as well as deriving
word meanings, we also need to give meanings to sentences and phrases. This
means that we need some method for composing vector representations of
words. There are a number of approaches, ranging from simple vector opera-
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tions to deep neural network methods. We work within the categorical com-
positional distributional (DisCoCat) model of Coecke et al. [2010]. This is based
in the idea that grammatical formalisms such as pregroup grammar [Lambek,
1999] have the same categorical structure as the category FVect whose objects
are �nite dimensional vector spaces and whose morphisms are linear maps.
The word representations used in DisCoCat have a strong theoretical founda-
tion based in formal grammar and semantics. Moreover, DisCoCat is �exible
with regard to which grammar and semantic representations it uses.

2.1 DisCoCat

We explain DisCoCat brie�y. For more details, see Coecke et al. [2010], Preller
and Sadrzadeh [2011]. A grammar for English is represented in a compact
closed category. The grammar is then mapped via a strong monoidal functor,
as described in [Preller and Sadrzadeh, 2011], to the category FVect of �nite-
dimensional vector spaces and linear maps. The grammar we discuss here
is pregroup grammar. It is possible to use other forms of grammar [Coecke
et al., 2013] or λ-calculus [Muskens and Sadrzadeh, 2016]. Pregroup grammar
is built over a set of types. We consider the set containing n for noun and s
for sentence. Each type has adjoints xr and xl. Complex types are built up by
concatenation of types, and we often leave out the dot so that xy = x · y. There
is a unit type such that x1 = 1x = x. Types and their adjoints interact via:

εrx : x · xr → 1, εlx : xl · x→ 1 ηr
x : 1→ xr · x, ηl

x : 1→ x · xl (1)

A string of grammatical types t1, ...tn is grammatical if it reduces, via the mor-
phisms above, to the sentence type s. For example, typing clowns as n, tell as
nrsnl and the truth as n, the sentence Clowns tell the truth has type n(nrsnl)n and
is shown to be grammatical as follows:

(εr 1 εl)n(nrsnl)n→ (εr 1)(n nrs 1)→ 1 s 1 = s (2)

The above reduction can be represented graphically as follows:

n nrsnl n

Clowns tell the truth
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This grammar is mapped to FVect by sending the noun type n to a vector
space N and the sentence type s to S. The concatenation operation in the
grammar is mapped to ⊗, i.e., the tensor product of vector spaces. Then the
morphisms εrp and εlp map to tensor contraction, and ηr

p and ηl
p map to identity

maps. This implies that intransitive verbs are represented as maps from N to
S, or matrices in N ⊗S, and that transitive verbs are represented as maps from
two copies of N to S, or tensors in N ⊗S⊗N . So, in the example above, Clowns
is mapped to a vector in N , as is the truth, and tell is mapped to a tensor in
N ⊗S ⊗N . The vectors and tensors are concatenated using the tensor product,
and tensor contraction is applied to map the sentence down into one sentence
vector. Compact closed categories have a nice diagrammatic calculus [Kelly
and Laplaza, 1980], for a linguistically couched explanation see Coecke et al.
[2010]. In this calculus, the composition of the words Clowns, tell, and the truth
into the sentence Clowns tell the truth is expressed as follows:

Clowns tell the truth

N NS

We will use this notation later to describe how to build particular representa-
tions of verbs and other function words.

2.2 DisCoCat in CPM(FVect)

In Piedeleu et al. [2015], Bankova et al. [2019], and Balkır et al. [2016] the Dis-
CoCat model is lifted to the category CPM(FVect), which has the same objects
as FVect, but whose morphisms are now completely positive maps. The CPM

construction is introduced in Selinger [2007]. Words are now represented as
positive operators rather than as vectors, and maps between them are com-
pletely positive maps. A positive operator is de�ned as follows, using bra-ket
notation from physics. For a unit vector |v〉, the projection operator |v〉 〈v| onto
the subspace spanned by |v〉 is called a pure state. A positive operator is given
by sum of pure states. It is an operator A such that:

1. ∀v ∈ V. 〈v|A|v〉 ≥ 0,

2. A is self-adjoint
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If, in addition, A has trace 1, then A encodes a probabilistic mixture of pure
states, and is called a density matrix. Relaxing this condition gives us di�erent
choices for normalization.
Importantly, CPM(FVect) is also compact closed, so that the same sort of

functorial mapping can be made from the grammar category to the semantics
category. Furthermore, the diagrammatic calculus can also be used in this
context.

2.3 Ordering positive operators

The set of positive operators on a vector space has an ordering introduced by
Löwner [1934]. For positive operators A and B, we de�ne:

A v B ⇐⇒ B −A is positive

In DisCoCat, we interpret this ordering as an hyponymy relation. If we have
a positive operator JmammalK representing the word mammal, and a positive
operator JdogK representing the word dog, then we would like to see:

JdogK v JmammalK

In Bankova et al. [2019] the authors introduce a notion of graded hyponymy.
Consider the relationship between dog and pet. Not all dogs are pets: some are
working dogs and some are wild. We therefore want to say that JdogK v JpetK
up to some value k ∈ [0, 1]. The grading is introduced by considering an error
term de�ned as follows. Suppose that A v B. Then B − A = D, i.e. A+D = B,
where D is some positive operator. However, it may be the case that this does
not hold. If not, it is possible to add in some error term E so that A v B + E.
This is viewed as saying that A entails B up to the error term E. Combining
de�nitions, A+D = B + E, and so trivially A entails B up to the error term A,
meaning that we can get any word A to entail another B by adding in an error
term that is A itself. We may then consider the size of the error term E, and
we would like to �nd the smallest such error term.
In Bankova et al. [2019], the error term was of the form (1 − k)A and the

scalar k ∈ [0, 1] gave a graded notion of hyponymy. The e�ect of this scalar is to
reduce the size of A until it ‘�ts inside’ B, giving a notion of graded hyponymy
that says that A is a k-hyponym of B, A vk B if B − kA is positive. So, if
k is equal to 1, the size of the error term is zero, meaning that we have full
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hyponymy. If k is zero, the only hyponymy that can be induced is the trivial
step of adding the whole of A in as an error term.

3 Methods

3.1 Measuring hyponymy

One of the drawbacks of the measure of graded entailment given in Bankova
et al. [2019] is that if the space spanned by eigenvectors of A, called Span(A),
is not a subspace of Span(B), then the value of k must be 0. However, it may
be the case that although Span(A) is not a subspace of Span(B), the value of
the operator on the part not included in Span(B) is small. It would therefore
be useful to be able to include a wider range of gradings. In Lewis [2019a] we
introduce two new measures which allow us to assign non-zero gradings to
these cases. We consider the error term E and calculate it as follows. If B−A is
not positive, it is possible to make it positive by adding in a positive operator
constructed in the following manner. Firstly diagonalize B − A, resulting in
a real-valued matrix, since B − A is real symmetric. Construct a matrix E

by setting all positive eigenvalues of B − A to 0 and changing the sign of all
negative eigenvalues. Then B − A + E will give us a positive matrix. This E is
our error term. In the best case, E = 0, meaning that A is a full hyponym of E,
and in the worst case, E = A, meaning that A does not have any overlap with
B. We propose two di�erent measures related to this error term that give us
values in R, giving a grading for hyponymy.
The �rst measure is

kBA =
∑

i λi∑
i |λi|

(3)

where λi is the ith eigenvalue of B − A and | · | indicates absolute value. This
measures the proportions of positive and negative eigenvalues in the expres-
sion B − A. If all eigenvalues are negative, kBA = −1, and if all are positive,
kBA = 1. This measure is balanced in the sense that kBA = −kAB.
Secondly, we propose

kE = 1− ||E||
||A||

(4)

where ||·|| denotes the Frobenius norm. This measures the size of the error term
as a proportion of the size of A. Since A = E in the worst case, this measure
ranges from 0 when E = A to 1 when E = 0.

6



3.2 Constructing positive operators from a corpus

In Lewis [2019a] we describe methods for building positive operators, follow-
ing the approach outlined in Bankova et al. [2019]. In that work, the authors
observe that each word vector has a corresponding pure matrix:

|cat〉 7→ |cat〉 〈cat|

Words which are more general can then be built up by summing over the pro-
jectors corresponding to the hyponyms of that word. For example, the meaning
of the word pet can be thought of as represented by:

JpetK =pd |dog〉 〈dog|+ pc |cat〉 〈cat|+ pt |tarantula〉 〈tarantula|+ ...

where ∀i.pi ≥ 0

In general, the meaning of a word w is considered to be given by a collection
of unit vectors {|wi〉}i, where each |wi〉 represents an instance of the concept
expressed by the word. Then the operator:

JwK =
∑

i

pi |wi〉 〈wi| ∈W ⊗W (5)

represents the word w. The pi are weightings derived from the text, and there
are various choices about what these should be, which we discuss in section
3.3.
We build representations of words as positive operators in the following

manner. Suppose we have a dictionary of word vectors {vi : |vi〉 ∈ W}i de-
rived from a corpus using standard distributional or embedding techniques,
for example GloVe, Pennington et al. [2014], FastText Bojanowski et al. [2017],
or weighted co-occurrence vectors. To build a representation of a word, we
obtain a set of hyponyms that are instances of that word. In this paper, we
use WordNet Miller [1995], a human-curated database of word relationships
including hyponym-hypernym pairs. The WordNet hyponymy relationship is
naturally arranged as a directed graph with a root (it is not quite a tree). For the
noun subset of the database, the root is the most general noun entity, and the
leaves are speci�c nouns. For example, under the word rocket there are (inter
alia): test_instrument_vehicle, Stinger, takeo�_booster, arugula. Notice that here
we have di�erent meanings of the word rocket, one as a projectile and one as
a vegetable. There are also less supervised ways of obtaining these relation-
ships using patterns derived from text, see Hearst [1992], Roller et al. [2018]
for examples.
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To build a positive operator for a word w, we go through the WordNet hi-
erarchy and collect all hyponyms wi of w at all levels. We then form JwK as
in equation (5), with pi = 1 for all i. When we build these operators, between
1/3 and 1/2 of the hyponyms listed in WordNet are available in GloVe, and we
therefore miss a large proportion of the information included in WordNet.

3.3 Normalization

An important parameter choice is the type of normalization to use. In Bankova
et al. [2019] two choices are discussed: normalizing operators to trace 1, or
normalizing operators to have maximum eigenvalue less than or equal to 1.
The properties of these two normalization strategies are thoroughly analyzed
in van de Wetering [2017]. If operators are normalized to trace 1, then the
crisp Löwner ordering becomes trivial: no two operators stand in the relation
A v B. If operators are normalized to have maximum eigenvalue 1, then the
Löwner ordering has particularly nice properties. In previous work [Lewis,
2019a] we have shown that good results on lexical entailment datasets can
be obtained using no normalization at all. However, applying a maximum
eigenvalue normalization means that further operations like applying negation
are likely to become easier, and hence in this paper we investigate how well
our models can do with normalization.

3.4 Composing positive operators

One of the strengths of DisCoCat is its formal approach to composition. Within
the category CPM(FVect) objects are �nite-dimensional vector spaces and
morphisms are completely positive maps. In Lewis [2019a] we examined two
composition methods build using a type-lifting approach, which we describe
below (Mult and BMult). Here we also investigate another way of forming a
completely positive map by building a Kraus operator associated with a given
positive operator (KMult).
In order to build these maps we use the type-lifting methods outlined in

Kartsaklis et al. [2012]. A Frobenius algebra over a �nite-dimensional vector
space with bases {−→n i}i is given by

∆ :: −→n i 7→ −→n i ⊗−→n i ι :: −→n i 7→ 1 µ :: −→n i ⊗−→n i 7→ −→n i ξ :: 1 7→ −→n i

In the graphical calculus, these are given by:
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∆ : ι : µ : ξ :

A vector |v〉 ∈ W can be lifted to a higher-order representation in W ⊗W

by applying the map ∆. In FVect, this higher-order representation takes the
vector |v〉 and embeds it along the diagonal of a matrix in W ⊗ W . So, for
example, given a vector representation of an intransitive verb |run〉 ∈ W , we
can lift that representation to a matrix in W ⊗ W by embedding it into the
diagonal of a matrix. The Frobenius algebra interacts with the type reduction
morphism εN in such a way that the result of lifting a verb and then composing
with a noun is to apply the µ multiplication to the tensor product of the noun
and the verb vectors, i.e.

(εN ⊗ 1N ) ◦ (1N ⊗∆N )(|noun〉 ⊗ |verb〉) = µ(|noun〉 ⊗ |verb〉)

Diagrammatically,

verbnoun

=

verbnoun

In FVect the multiplication µ implements pointwise multiplication of the
two vectors. However in CPM(FVect) we have di�erent choices for the mul-
tiplication µ. One is composition of the two operators. This results in a matrix
that is no longer self-adjoint, and so Piedeleu [2014] suggests using the non-
commutative and non-associative operator ρ

1
2
2 ρ1ρ

1
2
2 in its place. Piedeleu [2014]

also notes that the pointwise multiplication of two positive operators is a com-
pletely positive map, giving us another choice for composition.
Following Kartsaklis et al. [2012], this gives us a method for building verb

operators from their lower-level operators. Firstly, we assume the noun space
N ⊗ N to be equal to the sentence space S ⊗ S, and refer to these both as
W ⊗ W . Given a representation of an intransitive verb JverbK ∈ W ⊗ W , we
lift it to ∆(JverbK) ∈ W ⊗ W ⊗ W ⊗ W . Composing with a noun implements
Jnoun verbK = µ(JnounK⊗ JverbK).
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Lastly, we can form a completely positive map from a positive matrix A by
decomposing A into a weighted sum of orthogonal projectors A =

∑
i piPi, and

then forming the map
A(−) =

∑
i

piPi ◦ − ◦ Pi

The same proposal for composition is given in Coecke [2019].
For intransitive verbs we combine the noun and the verb via three operations

Mult, BMult, KMult.

Mult: Jnoun verbK = JverbK(JnounK) = JnounK� JverbK (6)

BMult: Jnoun verbK = JverbK(JnounK) = JverbK 1
2 JnounKJverbK 1

2 (7)

KMult: Jnoun verbK = JverbK(JnounK) =
∑

i

piPiJnounKPi (8)

where in KMult JverbK =
∑

i piPi. We also investigate switched versions of BMult
and KMult, where the order of composition is switched.
For transitive verbs there is one possibility for pointwise multiplication

of the operators, since this is both commutative and associative. For BMult
and KMult there are a number of composition orders. We will concentrate on
two which re�ect the di�erence between viewing verb as operator and view-
ing nouns as operator. Both compose verb and object, then verb phrase and
subject. We therefore have:

Mult: Jsubj verb objK = JsubjK� JverbK� JobjK (9)

BMult-V: Jsubj verb objK = JvpK 1
2 JsubjKJvpK 1

2 where JvpK = JverbK(JobjK) (10)

KMult-V: Jsubj verb objK =
∑

i

piPiJsubjKPi where
∑

i

piPi = JverbK(JobjK) (11)

BMult-N: Jsubj verb objK = JsubjK 1
2 JvpKJsubjK 1

2 where JvpK = JobjK(JverbK) (12)

BMult-N: Jsubj verb objK =
∑

i

piPiJvpKPi where
∑

i

piPi = JsubjK (13)

The notation JAK(JBK) refers to the corresponding two-place operation, either
KMult or BMult.

4 Experimental setting

We test our word representations and composition methods on the composi-
tional datasets of Sadrzadeh et al. [2018]. This is a series of three datasets,
covering simple intransitive sentences, transitive sentences, and verb phrases.
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The intransitive verb dataset consists of paired sentences consisting of a sub-
ject and a verb. In half the cases the �rst sentence entails the second, and in
the other half of cases, the order of the sentences is reversed. For example:

summer �nish, season end, T

season end, summer �nish, F

The �rst sentence is marked as entailing, whereas the second is marked as not
entailing. The dataset is created by selecting nouns and verbs from WordNet
that stand in the correct relationship. The transitive verb and verb phrase
datasets are similarly created.
To test our models, we build the basic word representations as in equation

(5). We then use the compositional methods outlined in section 3.4 to create the
sentence representations. We calculate the graded entailment value between
the composed sentence representations. In previous literature [Kartsaklis and
Sadrzadeh, 2016], area under receiver operating characteristic (ROC) curve was
reported. For comparison purposes, we calculate the same quantity. To test for
signi�cance of our results, we bootstrap the data with 100 repetitions [Efron,
1992] and use a one-sample t-test to compare with the results given in Kart-
saklis and Sadrzadeh [2016]. To compare between models we use a two sample
t-test, and in each case we apply the Bonferroni correction to compensate for
multiple comparisons. We use GloVe vectors in 300 dimensions. The basic op-
erators we build are normalised to have maximum eigenvalue 1. We want to
retain this property. The BMult, KMult operators and their variants preserve
this property by Weyl’s inequalities [Weyl, 1912] and the orthogonality of pro-
jectors in KMult. For the other operators, if the maximum eigenvalue of the
composed expression is greater than 1, we normalize, else we leave it as is.

5 Results

On the KS2016 compositionality datasets results are reported in terms of area
under ROC curve (Table 1). Overall, the kBA measure works best with the com-
position operators, with every operator outperforming the previous best results
on this dataset. Across both measures, theMult operator performs particularly
well, and the KMult also perform strongly. Interestingly, the KMult operators
perform best when there is more structure in the phrase, indicating that per-
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Table 1: Area under ROC curve on the KS2016 datasets. For the SV and VO datasets, BMult1 and
KMult1 refer to the models described in equations (7) and (8). BMult2 and KMult2 refer the variants
formed by switching the order of composition. For SVO, BMult1 and KMult1 refer to the models
described in equations (10) and (11) and BMult2 and KMult2 refer to the models described in equation
(12) and (13). A * indicates that the value is significantly higher than the baseline from Kartsaklis
and Sadrzadeh [2016] (p < 0.01). A + indicates that the value is not significantly lower than the Mult
model (p < 0.05).

kE measure kBA measure
Model SV VO SVO SV VO SVO
KS2016 best 0.84 0.82 0.86 0.84 0.82 0.86
Verb only 0.632 0.632 0.663 0.868∗ 0.829∗ 0.890∗

Addition 0.576 0.586 0.492 0.893∗ 0.892∗ 0.945∗

Mult 0.885∗ 0.842∗ 0.966∗ 0.961∗ 0.934∗ 0.980∗

BMult1 0.794 0.749 0.880∗ 0.945∗ 0.916∗ 0.977∗

BMult2 0.778 0.723 0.869 0.949∗ 0.914∗ 0.980∗+

KMult1 0.881∗ 0.833∗ 0.946∗ 0.957∗+ 0.934∗+ 0.984∗+

KMult2 0.823 0.800 0.930∗ 0.909∗ 0.939∗+ 0.963∗

haps this operation will start to outperform the simpler Mult in more compli-
cated situations.
The good performance of our models is likely to be due to the fact that both

the dataset and our word representations were constructed from WordNet, and
hence the high performance is to be expected. However, it is still interesting
that our representations work so well with the compositional operations.

6 Discussion and further work

We have suggested a mechanism for building the positive operators needed for
the theory presented in Bankova et al. [2019], together with novel measures of
graded hyponymy. The representations and the measures we have developed
perform competitively on phrase and sentence datasets. The type of repre-
sentation we have developed is a hybrid representation in the sense that we
use o�-the-shelf distributional vectors, but also human-provided informa-
tion from WordNet. The representations are extremely quick to build, with no
training time.
The datasets we have so far tested on are relatively small, and therefore

testing on larger datasets such as the Stanford Natural Language Inference
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(SNLI) dataset [Bowman et al., 2015a] is an important next step. Since the
representations we build are not tuned to a particular dataset, the problems
pointed out by Talman and Chatzikyriakidis [2018] will hopefully be lessened.
It is constructive to consider what the representations we build consist of.

The modelling of words as positive operators is in a way referential, since we
are forming the meaning of a word by summing over the things that fall under
it as a concept. Since we obtain this information from WordNet, we cannot of
course literally sum over representations of the individual objects in the world
to which the word refers. The instances obtained from WordNet serve as a
proxy for the objects referred to. However, if we were to implement this model
as gathering data from some embodied or simulated environment, we could
then view the representation of a word as summing over individual represen-
ations that an agent encounters.
Taking the information from WordNet also utilises the sense of individual

words, however, since these vectors are themselves a summary representation
of parts of the concept. Modelling words as positive operators allows us to in-
corporate multiple senses of a word, ranging from slight variances in meaning
(booster_rocket, space_rocket) to full lexical ambiguity (arugula). The di�erence
between the modelling of combinations of senses and combinations of ref-
erents can in fact be both separated out and reincorporated into one shared
representation, within a second iteration of the CPM() construction, done in
Ashoush and Coecke [2016]. Finding a means of constructing these representa-
tions so that the dimensionality is not prohibitive would be a useful extension.
The ordering we impose onword, phrase and sentence representations forms

a hierarchy, and the individual word representations have the nice property that
their similarity can be compared. This suggests further research into the no-
tion of co-hyponymy - the relationship that obtains between two words that
share a hypernym, such as dog and cow, which share the hypernym mammal.
Exploring the ordering of composition will be an important area of further

work - it is unclear what it means to interpret the nouns as operators rather
than the verbs. One line of inquiry could be to look into understanding this via
the type-raising operations of categorial grammar.
Similarities to our approach can be found in the notion of words being

represented as Gaussians [Jameel and Schockaert, 2017, Vilnis and McCallum,
2014]. The positive operators we build have the same structure as covariance
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matrices and, if appropriately normalized, are interpreted as representing a
probability distribution over vectors. Exploring these connections is an area of
further work.
Finally, a crucial extension to this whole approach is to be able to model

hyponymy, composition, and their interaction in downwardly monotone con-
texts, using the natural logic introduced in Barwise and Cooper [1981], Mac-
Cartney and Manning [2007]. Whilst the representations we have built have a
mechanism for lexical composition, i.e. a means to obtain the sense of a phrase
or sentence from the senses of the words themselves, what we do not so far
have is a notion of logical composition, assertion, or truth. Work is currently
in progress to develop a model for negation, see Lewis [2019b]. This is an area
of ongoing research.
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